skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Singla, Samriddhi"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Advancements in remote sensing technology allowed for collecting vast amounts of satellite and aerial imagery with up to 1 cm pixel resolutions, stored in raster format crucial for various research fields. However, processing this data poses challenges, including resolving data dependencies when location, resolution, and coordinate systems do not align and managing large datasets within memory constraints. This paper introduces RDPro, a novel Spark-based system that efficiently processes and analyzes large raster datasets. RDPro features a new data model tailored for data dependencies in a distributed, shared-nothing environment, complete with tools for loading and writing raster data. It also optimizes core raster operations within Spark, allowing users to integrate complex data science workflows. Comparative analysis shows RDPro outperforms existing systems by up to two orders of magnitude. 
    more » « less
  2. Modeling fire spread is critical in fire risk management. Creating data-driven models to forecast spread remains challenging due to the lack of comprehensive data sources that relate fires with relevant covariates. We present the first comprehensive and open-source dataset that relates historical fire data with relevant covariates such as weather, vegetation, and topography. Our dataset, named \textitWildfireDB, contains over 17 million data points that capture how fires spread in the continental USA in the last decade. In this paper, we describe the algorithmic approach used to create and integrate the data, describe the dataset, and present benchmark results regarding data-driven models that can be learned to forecast the spread of wildfires. 
    more » « less